Эффективная и надежная работа электродвигателей: новый подход к выполнению проверок соответствует реальным условиям работы

Традиционные методы измерения параметров и КПД электродвигателей тщательно проработаны, но не всегда широко используются. В значительной степени это объясняется тем, что для выполнения проверок требуется отключение электродвигателей, а иногда и целых систем, приводящее к большой стоимости простоя производства. Fluke предлагает новый подход к выполнению проверок с использованием анализатора качества электроэнергии и параметров электродвигателя Fluke 438-II, который  обеспечивает модернизированный и экономичный способ проверки КПД электродвигателя, при этом нет необходимости в установке внешних механических датчиков и отсутствуют дорогостоящие простои.

fluke438_00.jpgЭлектродвигатели являются важнейшим элементом многих промышленных процессов, они потребляют до 70 % от общего количества энергии на промышленном предприятии и до 46 % от общего количества производимого электричества в мире. Учитывая то, насколько большую роль электродвигатели играют в промышленных процессах, стоимость простоев, связанных с их неисправностью, может измеряться десятками тысяч долларов в час. Обеспечение эффективной и надежной работы электродвигателей — это одна из наиболее важных задач, которую ежедневно решают технические специалисты и инженеры по обслуживанию.

Эффективное использование электричества — это не просто «полезно». Во многих ситуациях от энергоэффективности зависит, прибыльной или убыточной является компания. Поскольку электродвигатели потребляют на промышленных объектах такое значительное количество энергии, эффективность их использования стала основным фактором, от которого зависит экономия и поддержание рентабельности. Кроме того, желание обеспечить экономию посредством увеличения эффективности и снизить зависимость от природных ресурсов стимулирует многие компании применять такие промышленные стандарты, как ISO 50001. Стандарт ISO 50001 устанавливает основные положения и требования для организации, внедрения и поддержания системы управления энергопотреблением, призванной обеспечить постоянную экономию.

Традиционные методы проверки электродвигателей

Традиционный метод измерения производительности и КПД электродвигателей хорошо проработан, но его внедрение может быть связано с большими расходами, а реализация в рамках технологических процессов трудноосуществима. Для проверки производительности электродвигателя часто требуется полное отключение системы, что может привести к дорогостоящему простою. Чтобы измерить КПД электродвигателя, необходимо определить входную электрическую и выходную механическую мощности в широком динамическом диапазоне рабочих параметров. При измерении производительности электродвигателя традиционным методом техническим специалистам вначале необходимо установить электродвигатель на испытательный стенд. Испытательный стенд представляет собой проверяемый электродвигатель, закрепленный на генераторе или на динамометре. Затем вал тестируемого электродвигателя соединяется с нагрузкой. На валу закреплен датчик скорости (тахометр), а также комплект датчиков крутящего момента, на основании показаний которых выполняется расчет механической мощности. Система предоставляет различные параметры, в том числе скорость, крутящий момент и механическую мощность. Некоторые системы также позволяют измерить электрическую мощность и затем рассчитать КПД.

КПД вычисляется по формуле:

η (КПД) = Механическая мощность / Электрическая мощность

Во время проверки изменяются параметры нагрузки, что позволяет определять КПД для различных режимов работы.

Система испытательного стенда может показаться достаточно простой, однако с ее использованием связано несколько характерных недостатков:

  1. Электродвигатель необходимо демонтировать с места установки.
  2. Значения нагрузки электродвигателя не являются по-настоящему репрезентативными, поскольку не характеризуют параметры электродвигателя при эксплуатации.
  3. Во время проведения проверки необходимо приостановить работу, что создает простой, либо взамен тестируемого необходимо временно установить другой электродвигатель.
  4. Датчики крутящего момента отличаются высокой стоимостью и ограниченным рабочим диапазоном, поэтому для проверки различных электродвигателей может потребоваться несколько датчиков.
  5. Испытательный стенд для тестирования широкого диапазона электродвигателей имеет высокую стоимость. Такие испытательные стенды обычно используются специалистами по ремонту электродвигателей или исследовательскими организациями.
  6. Не учитываются «реальные» рабочие условия.

fluke438_p01.jpg fluke438_p02.jpg fluke438_p03.jpg

Параметры электродвигателей

Электродвигатели могут предназначаться для различных областей применения и нагрузок, поэтому характеристики каждого электродвигателя отличаются. Классификация характеристик осуществляется в соответствии со стандартами NEMA (Национальной ассоциации производителей электрооборудования) или IEC (Международной электротехнической комиссии). От этих характеристик напрямую зависят работа и КПД электродвигателя. На каждом электродвигателе закреплена паспортная табличка, на которой указаны основные рабочие параметры и информация о КПД электродвигателя в соответствии с рекомендациями NEMA или IEC. Указанные на паспортной табличке данные можно сравнивать с реальными характеристиками режима эксплуатации. Например, сравнивая эти значения, можно узнать, что электродвигатель превышает ожидаемые характеристики по скорости или крутящему моменту, что может привести к сокращению срока службы электродвигателя или к преждевременному выходу из строя. Снижение эксплуатационных характеристик электродвигателя могут также вызвать асимметрия напряжения или тока, а также гармоники, связанные с плохим качеством электроэнергии. При существовании какого-либо из этих условий необходимо «понизить номинальные параметры» электродвигателя, то есть облегчить режим его работы, что может привести к нарушению технологических процессов при недостаточной механической мощности. Понижение номинальных параметров рассчитывается по стандарту NEMA в соответствии с данными, указанными для данного типа электродвигателя. Стандарты NEMA и IEC несколько отличаются друг от друга, но в целом они придерживаются одинаковых положений.

Фактические условия эксплуатации

Тестируемые на стенде электродвигатели обычно работают в наиболее комфортных условиях. Во время реальной работы эти комфортные условия, как правило, обеспечить не удается. Непостоянство рабочих условий приводит к снижению производительности электродвигателя. Например, на промышленном предприятии могут быть нагрузки, оказывающие непосредственное влияние на качество электроэнергии и вызывающие асимметрию в системе или способные привести к появлению гармоник. Каждое из этих условий может серьезно повлиять на производительность электродвигателя. Кроме того, нагрузка, приводимая в движение электродвигателем, может быть неоптимальной или может не соответствовать изначальному предназначению электродвигателя. Нагрузка может быть слишком большой для данного электродвигателя, или возможна перегрузка вследствие плохого управления технологическими процессами или чрезмерного трения, вызванного наличием какого-либо постороннего предмета, блокирующего работу насоса или рабочего колеса вентилятора. Обнаружение этих аномалий может быть затруднено и потребовать много времени, вследствие чего эффективный поиск неисправностей становится проблематичным.

Новый подход

Анализатор качества электроэнергии и параметров электродвигателя Fluke 438-II обеспечивает модернизированный и экономичный способ проверки КПД электродвигателя, при этом нет необходимости в установке внешних механических датчиков и отсутствуют дорогостоящие простои. Прибор Fluke 438-II, созданный на основе анализаторов качества электроэнергии Fluke серии 430-II, оснащен полным набором функций для измерения параметров качества электроэнергии, а также механических параметров при прямом пуске электродвигателей от сети. 438-II на основе данных паспортной таблички электродвигателя (NEMA или IEC) и измеренных параметров трехфазного электропитания рассчитывает в реальном времени параметры электродвигателя, включая скорость, крутящий момент, механическую мощность и КПД, при этом использование дополнительных датчиков крутящего момента и скорости не требуется. Кроме того, 438-II непосредственно вычисляет коэффициент снижения мощности электродвигателя в режиме работы. Для выполнения этих измерений технический специалист или инженер должен ввести в прибор Fluke 438-II следующие данные: номинальную мощность в кВт или л.с., номинальное напряжение и силу тока, номинальную частоту, номинальный cos φ или коэффициент мощности, номинальный сервис-фактор, а также тип электродвигателя в соответствии с классификацией NEMA или IEC.

fluke438_01.jpg fluke438_02.jpg

Принцип работы

Fluke 438-II выполняет механические измерения параметров (частоты вращения электродвигателя, нагрузки, крутящего момента и КПД) с помощью уникальных алгоритмов анализа формы электрических сигналов. Эти алгоритмы основаны на сочетании физических и управляемых данными моделей асинхронного электродвигателя. При этом не требуется выполнение предварительных проверок, которые обычно необходимы для измерения параметров электродвигателя, например, сопротивления статора. Скорость электродвигателя можно рассчитать на основе зубцовых гармоник ротора, присутствующих в сигналах тока. Крутящий момент на валу электродвигателя можно описать с помощью значений напряжения, силы тока и скольжения асинхронного электродвигателя, используя хорошо известные, но сложные физические формулы. Электрическая мощность измеряется с помощью осциллограмм входного тока и напряжения. При получении расчетных значений крутящего момента и скорости механическая мощность (или нагрузка) вычисляется из произведения крутящего момента на скорость. КПД электродвигателя вычисляется путем деления рассчитанной механической мощности на измеренную электрическую мощность. Компания Fluke провела обширные испытания на тестируемых электродвигателях, приводящих в движение динамометры. Для определения погрешности измеренные значения фактической электрической мощности, крутящего момента на валу электродвигателя, а также скорости сравнивались с показаниями прибора 438-II.

Заключение

Традиционные методы измерения параметров и КПД электродвигателей тщательно проработаны, но не всегда широко используются. В значительной степени это объясняется тем, что для выполнения проверок требуется отключение электродвигателей, а иногда и целых систем, приводящее к большой стоимости простоя производства. Прибор Fluke 438-II предоставляет чрезвычайно полезную информацию, которая ранее была труднодоступной и дорогостоящей. Кроме того, наличие на приборе Fluke 438-II передовых функций по анализу качества электроэнергии позволяет измерять качество электроэнергии в реальном режиме работы системы. Измерение важных параметров для определения КПД электродвигателя стало проще, поскольку не требуется использование отдельных внешних датчиков крутящего момента и скорости, благодаря чему можно анализировать производительность самых распространенных промышленных процессов с электроприводом, не прерывая их выполнения. Это позволяет техническим специалистам сократить время простоя, а также отслеживать изменения параметров электродвигателя во времени и получить более полную картину общего состояния системы и ее характеристик. Отслеживание графиков параметров позволяет увидеть изменения, которые могут быть признаком надвигающегося отказа электродвигателя, и заменить его до выхода из строя.


13.12.2016

Возврат к списку