FLUKE networks.

Что делать, если ваши кабельные соединения не соответствуют стандарту 10GBASE-T?

Для начала нужно провести тестирование и измерения, предоставляющие достоверные результаты. Все соединения, предназначенные для работы с 10GBASE-T, должны быть протестированы традиционным методом «внутри канала» в соответствии со спецификацией стандарта 10GBASE-Т или одному из аналогичных отраслевых стандартов (TIA TSB-155; версия 5). Кабельный анализатор DTX-1800 компании Fluke Networks полностью поддерживает эти стандарты и может использоваться «как есть» для выполнения первого шага. Посетите сайт Fluke Networks и убедитесь, что вы располагаете последней версией программного обеспечения и библиотекой стандартов на вашем устройстве. Первый тест подтверждает, что все установленные кабельные линии соответствуют требованиям к передаче, указанным в стандартах в частотном диапазоне от 1 до 500 МГц. На втором этапе мы должны убедиться, что «межкабельные» помехи, называемые Внешними перекрестными наводками, соответствуют установленным стандартам. Комплект DTX-10GKIT содержит все аппаратные и программные средства для измерения внешних перекрестных наводок при использовании с DTX-1800.

Методика подавления перекрестных наводок при тестировании «внутри канала»

Вполне вероятно, что некоторые линии не пройдут тесты «внутри канала». В этом случае необходимо обследовать и модернизировать все каналы, чтобы добиться соответствия этим базовым требованиям для передачи 10GBASE-T. Используйте диагностические возможности тестеров серии DTX, которые предоставляют информацию о проблеме и о корректирующих действиях для ее разрешения. Если Автотест не удалось пройти, нажмите кнопку информации об ошибке на тестере, чтобы получить подробную информацию. Данная информация может быть неполной, если ошибки произошли в диапазоне высоких частот. Поэтому мы хотели бы дать несколько рекомендаций по устра-

нению неисправностей. Весьма вероятно, что большая часть сбоев, не распознанных диагностикой, будет связана с неправильной работой соединений в канале в диапазоне высоких частот. Дальнейшие корректирующие действия рекомендуется выполнять в такой последовательности:

- Замените кабели в рабочей зоне, коммутационные кабели и/или кабели оборудования кабелями кат. 6А
- Преобразуйте кроссовое соединение в межсоединение (interconnect)
- 3. Замените межсоединение межсоединением кат. 6А
- Замените разъемы точки консолидации разъемами кат. 6А.
- 5. Замените разъем в розетке рабочей зоны разъемом кат. 6А.

Чтобы увидеть эффект от каждого шага модернизации рекомендуем провести повторное тестирование линии. Очевидно, что если тест будет пройден, то ваши корректирующие действия были успешны.

Методика подавления перекрестных наводок при тестировании между каналами

Тестирование перекрестных наводок обычно производится выборочно. Для получения дополнительной информации об методике выборочного контроля, а также измерении перекрестных наводок, см. техническое описание «Сертификация и повторная сертификация проводки на витой паре для сетей Ethernet 10 Гбит/с: и руководство по измерению внешних перекрестных наводок (AXTalk)» в центре решений 10 Gig Fluke Networks на сайте www.flukenetworks.com/10gig.

Сформулируем основные правила тестирования внешних перекрестных наводок: Более длинные линии должны быть протестированы первыми. Протестированная линия упоминается в стандартах как «линия-жертва помех». Чтобы было проще различать линии жертвы помех и линии-источники помех, будем называть линии жертвы помех линиямижертвами. Все линии в том же жгуте, что и линия-жертва, должны быть включены в тест на внешние перекрестные наводки как линии-источники помех. Кроме того, убедитесь, что вы включили в список линий-источников помех линии, которые подключены рядом на коммутационной панели в Telecommunication Room (Телекоммуникационный зал).

Посмотрите, как хороший инструмент может помочь вам – поднять пропускную способность с 10 Мбит до 10 Гбит.

Интерпретация результатов тестирования

Тестирование внешних перекрестных наводок проводится с помощью программы AxTALK Analyzer™, работающей на персональном компьютере или ноутбуке на базе Windows. Компьютер подключается к главному модулю DTX-1800 через USB. Программа AxTalk Analyzer управляет DTX-1800, загружает все результаты измерений и обрабатывает эти данные в реальном времени, чтобы получить суммарные значения (power sum) для пар проводников в линиижертве. После того, как действие внешних перекрестных наводок пар проводников в дополнительных линияхисточниках помех измерено, программа AxTALK Analyzer автоматически добавляет и показывает их действие, рассчитывая суммарный AXTalk (PS AXTalk) для всех источников помех, до сего момента включенных в тест, для каждой пары проводников жертвы. На Рис. 1 показан экран результатов AxTALK Analyzer после добавления к результатам теста пяти источников помех. Список источников помех, включенных в данные результаты теста, показан в правом верхнем углу экрана AxTALK Analyzer. На Рис. 1 можно видеть, что воздействие перекрестных наводок пяти источников помех оценено и добавлено к результатам в графической форме.

Отдельные межпарные показатели внешних перекрестных наводок, на основании которых рассчитаны суммарные параметры, сохраняются в памяти ПК. Вы в любой момент можете изучить воздействие одного из источников на четыре пары проводников линии-жертвы. На Рис. 2 это можно увидеть через показатели PS ANEXT одного из источников (ID: 1A/8A-A.02) на пары проводников в линиижертве (ID: 1A/8A.A05). Проверки были проведены по всему списку линий источников помех за исключением той, которую мы хотим исследовать.

Рис. 1 – Сумма результатов теста ANEXT для пяти источников помех

Посмотрите наихудший запас между измеренными значениями и требованием стандарта PS ANEXT для каждой пары проводников в линии-жертве, нажав кнопку «Result Data» (Результаты) (в левой части экрана, слева от кнопки «Run test» (Критерий серий)), вызывающую экран, показанный на Рис. 3. Например, мы видим, что пара проводников 7,8 в линии-жертве показывает худший запас в 9,6 дБ (при частоте 118 МГц).

Рис. 2 – Power Sum ANEXT для каждой пары проводников в «линии-жертве» от четырех пар проводников одной линии-источника помех.

Также можно видеть, что запас результатов тестирования для одного источника помех значительно лучше, чем запас общего воздействия пяти линий-источников помех. Это, должно быть, ясно. Просто сравните расстояние над линиями предела измеренных значений на Рис. 2 (только один источник помех) и это же расстояние на Рис. 1 (общее воздействие пяти источников). При изучении наихудшего запаса PS ANEXT при включении всех пяти источников, как показано на Рис. 1, пара проводников 7,8 остается худшей парой и запас уменьшается до 4,08 МГц (на рисунке не показано). С добавлением большего количества источников помех запас PS ANEXT будет медленно уменьшаться. Если после добавления последнего источника значения измерения останутся над линией предела, предусмотренного стандартом, считается, что линия-жертва соответствует требованиям по PS ANEXT. Затем тестирование должно быть повторено для AFEXT, а данные результатов исследованы аналогично как для PS ANEXT.

Result (End 1)								
	PS ANEXT							
	Pair	Frequency	Value	Limit	Margin	Status		
	12	70.0 MHz	55.76 dB	46.04 dB	9.72 dB	Pass		
	36	482.0 MHz	48.65 dB	34.25 dB	14.40 dB	Pass		
	45	164.5 MHz	55.81 dB	41.25 dB	14.55 dB	Pass		
	78	118.0 MHz	53.02 dB	43.42 dB	9.60 dB	Pass		
	Average	101.5 MHz	58.58 dB	46.65 dB	11.94 dB	Pass		

Рис. 3 – Общие результаты теста (Худший запас) для результатов PS ANEXT, показанных на Рис. 2

Нахождение источника, оказывающего наихудшее воздействие на ANEXT

В случае неудачного испытания по PS ANEXT нужно узнать, какая из линий-источников оказывает наихудшее влияние на ANEXT, для того, чтобы выбрать стратегию устранения проблем(ы). Изучить воздействие, совершаемое отдельными линиями-источниками помех, можно методом, описанным выше. Линии-источники помех, показывающие наименьшие худшие запасы (или отрицательные числа), являются главными виновниками (оказывают наибольшее воздействие на PS ANEXT). Вы можете отсортировать линии по количеству наводок ANEXT от больших к меньшим.

Для каждого из сильнейших источников можно предпринять те или иные корректирующие действия (подавление перекрестных наводок), перечисленные ниже в порядке приоритета:

- Уменьшите уровень внешних перекрестных наводок, разделив кабели оборудования и коммутационные кабели, а также разъединив горизонтальную кабельную систему
- Альтернативой разделению шнуров оборудования является использование шнуров оборудования, специально предназначенных для уменьшения внешних перекрестных наводок, например, Category 6 ScTP и Augmented Category 6
- Преобразуйте кроссовое соединение в межсоединение (interconnect)
- 4. Замените разъемы на соответствующие Augmented Category 6
- 5. Замените горизонтальные кабели на соответствующие augmented Category 6

После принятия одной из мер по подавлению, снова проведите исследование взаимодействия линии-жертвы и измененной линии-источника, и посмотрите, достигнуты ли заметные улучшения в значении худшего запаса для интересующего параметра.

Хотите узнать больше о тестировании 10 Gig?

Посетите наш центр решений 10 Gig на сайте www.flukenetworks.com/10gig, чтобы получить последние обновления стандартов 10 Gig. В нашем центре решений вы найдете кое-что полезное, например, технические описания, веб-передачи, виртуальные демонстрации и многое другое.

Компания Fluke Networks P.O. Box 777, Everett, WA USA 98206-0777

Fluke Networks работает в более чем 50 странах мира. За информацией о локальных дистрибьюторах обращайтесь на веб-сайт www.flukenetworks.com/contact.

©2006 Fluke Corporation. Все права защищены. Напечатано в США. 1/2007 3032019 A-RUS-N Ред. А